Due Nov 11 Friday @ 11:59pm
Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook) to Gracescope on BruinLearn.
Q4. Ture of false. For each statement, indicate it is true or false and gives a brief explanation.
If the columns of $\mathbf{X}$ (eigenvectors of a square matrix $\mathbf{A}$) are linearly independent, then (a) $\mathbf{A}$ is invertible; (b) $\mathbf{A}$ is diagonalizable; (c) $\mathbf{X}$ is invertible; (d) $\mathbf{X}$ is diagonalizable.
If the eigenvalues of $\mathbf{A}$ are 2, 2, 5 then the matrix is certainly (a) invertible; (b) diagonalizable.
If the only eigenvectors of $\mathbf{A}$ are multiples of $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$, then the matrix has (a) no inverse; (b) a repeated eigenvalue; (c) no diagonalization $\mathbf{X} \boldsymbol{\Lambda} \mathbf{X}^{-1}$.
Q7. Suppose $\mathbf{A}$ has eigenvalues 0, 3, 5 with independent eigenvectors $\mathbf{u}$, $\mathbf{v}$, $\mathbf{w}$ respectively.
Q10. Suppose $\mathbf{S}$ is positive definite with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$ with corresponding orthonormal eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$.