With singular value decomposition $\mathbf{X} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}'$, verify that
$$
\mathbf{X}^+ = \mathbf{V} \boldsymbol{\Sigma}^+ \mathbf{U}' = \mathbf{V}_r \boldsymbol{\Sigma}_r^{-1} \mathbf{U}_r' = \sum_{i=1}^r \sigma_i^{-1} \mathbf{v}_i \mathbf{u}_i',
$$
where $\boldsymbol{\Sigma}^+ = \text{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0)$ and $r= \text{rank}(\mathbf{X})$, satifies the four properties of the Moore-Penrose inverse).
Show that $\text{rank}(\mathbf{X}^+) = \text{rank}(\mathbf{X})$.
Show that $\mathbf{X}^+ \mathbf{X}$ is the orthogonal projector into $\mathcal{C}(\mathbf{X}')$ and $\mathbf{X} \mathbf{X}^+$ is the orthogonal projector into $\mathcal{C}(\mathbf{X})$.
Show that $\boldsymbol{\beta}^+ = \mathbf{X}^+ \mathbf{y}$ is a minimizer of the least squares criterion $f(\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X} \boldsymbol{\beta}\|^2$. Hint: check $\boldsymbol{\beta}^+$ satisfies the normal equation $\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{y}$.
Show that $\boldsymbol{\beta}^+ \in \mathcal{C}(\mathbf{X}')$.
Show that if another $\boldsymbol{\beta}^\star$ minimizes $f(\boldsymbol{\beta})$, then $\|\boldsymbol{\beta}^\star\| \ge \|\boldsymbol{\beta}^+\|$. This says that $\boldsymbol{\beta}^+ = \mathbf{X}^+ \mathbf{y}$ is the least squares solution with smallest L2 norm. Hint: since both $\boldsymbol{\beta}^\star$ and $\boldsymbol{\beta}^+$ satisfy the normal equation, $\mathbf{X}'\mathbf{X} \boldsymbol{\beta}^\star = \mathbf{X}'\mathbf{X} \boldsymbol{\beta}^+$ and deduce that $\boldsymbol{\beta}^\star - \boldsymbol{\beta}^+ \in \mathcal{N}(\mathbf{X})$.
Q3. Let $\mathbf{B}$ be a submatrix of $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that the largest singular value of $\mathbf{B}$ is always less than or equal to the largest singular value of $\mathbf{A}$.
Q4. Show that all three matrix norms ($\ell_2$, Frobenius, nuclear) are invariant under orthogonal transforms. That is
$$
\|\mathbf{Q}_1 \mathbf{A} \mathbf{Q}_2'\| = \|\mathbf{A}\| \text{ for orthogonal } \mathbf{Q}_1 \text{ and } \mathbf{Q}_2.
$$