Due Nov 29 Dec 2 Friday @ 11:59pm
Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook) to Gracescope on BruinLearn.
Q1. (MLE of multivariate normal model) Let $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^{p}$ be iid samples from a $p$-dimensional multivariate normal distribution $N(\boldsymbol{\mu}, \boldsymbol{\Omega})$, where the mean $\boldsymbol{\mu} \in \mathbb{R}^p$ and covariance $\boldsymbol{\Omega} \in \mathbb{R}^{p \times p}$ are unkonwn parameters. The log-likelihood is $$ \ell(\boldsymbol{\mu}, \boldsymbol{\Omega}) = - \frac n2 \log \det \boldsymbol{\Omega} - \frac 12 \sum_{i=1}^n (\mathbf{y}_i - \boldsymbol{\mu})' \boldsymbol{\Omega}^{-1} (\mathbf{y}_i - \boldsymbol{\mu}) - \frac{n}{2} \log 2\pi. $$ Show that the maximum likelihood estimate (MLE) is \begin{eqnarray*} \widehat{\boldsymbol{\mu}} &=& \frac{\sum_{i=1}^n \mathbf{y}_i}{n} \\ \widehat{\boldsymbol{\Omega}} &=& \frac{\sum_{i=1}^n (\mathbf{y}_i - \hat{\boldsymbol{\mu}})(\mathbf{y}_i - \hat{\boldsymbol{\mu}})'}{n}. \end{eqnarray*} That is to show that $\widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Omega}}$ maximize $\ell$.
Hint: Use the first order optimality condition to find $\widehat{\boldsymbol{\mu}}$ and $\widehat{\boldsymbol{\Omega}}$. To check the optimality of $\widehat{\boldsymbol{\Omega}}$, use its Cholesky factor.
Q2. (Smallest matrix subject to linear constraints) Find the matrix $\mathbf{X}$ with the smallest Frobenius norm subject to the constraint $\mathbf{X} \mathbf{U} = \mathbf{V}$, assuming $\mathbf{U}$ has full column rank.
Hint: Write down the optimization problem and use the method of Lagrange multipliers.
Q3. (Minimizing a convex quadratic form over manifold) $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix. Find a matrix $\mathbf{U} \in \mathbb{R}^{n \times r}$ with orthonomal columns that maximizes $\text{tr} (\mathbf{U}' \mathbf{A} \mathbf{U})$. That is to \begin{eqnarray*} &\text{maximize}& \quad \text{tr} (\mathbf{U}' \mathbf{A} \mathbf{U}) \\ &\text{subject to}& \quad \mathbf{U}' \mathbf{U} = \mathbf{I}_r. \end{eqnarray*} This result generalizes the fact that the top eigenvector of $\mathbf{A}$ maximizes $\mathbf{u}' \mathbf{A} \mathbf{u}$ subject to constraint $\mathbf{u}'\mathbf{u} = 1$.
Hint: Use the method of Lagrange multipliers.
Q4. (Procrustes rotation) The Procrustes problem studies how to properly align images.
Let matrices $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times p}$ record $n$ points on the two shapes. Mathematically we consider the problem
\begin{eqnarray*}
\text{minimize}_{\beta, \mathbf{O}, \mu} \quad \|\mathbf{X} - (\beta \mathbf{Y} \mathbf{O} + \mathbf{1}_n \mu^T)\|_{\text{F}}^2,
\end{eqnarray*}
where $\beta > 0$ is a scaling factor, $\mathbf{O} \in \mathbb{R}^{p \times p}$ is an orthogonal matrix, and $\mu \in \mathbb{R}^{p}$ is a vector of shifts. Here $\|\mathbf{M}\|_{\text{F}}^2 = \sum_{i,j} m_{ij}^2$ is the squared Frobenius norm. Intuitively we want to rotate, stretch and shift the shape $\mathbf{Y}$ to match the shape $\mathbf{X}$ as much as possible.
Q4.1 Let $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ be the column mean vectors of the matrices and $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{Y}}$ be the versions of these matrices centered by column means. Show that the solution $(\hat{\beta}, \hat{\mathbf{O}}, \hat{\mu})$ satisfies \begin{eqnarray*} \hat{\mu} = \bar{\mathbf{x}} - \hat{\beta} \cdot \hat{\mathbf{O}}^T \bar{\mathbf{y}}. \end{eqnarray*} Therefore we can center each matrix at its column centroid and then ignore the location completely.
Q4.2 Derive the solution to \begin{eqnarray*} \text{minimize}_{\beta, \mathbf{O}} \quad \|\tilde{\mathbf{X}} - \beta \tilde{\mathbf{Y}} \mathbf{O}\|_{\text{F}}^2 \end{eqnarray*} using the SVD of $\tilde{\mathbf{Y}}^T \tilde{\mathbf{X}}$.
Q5. (Ridge regression) One popular regularization method in machine learning is the ridge regression, which estimates regression coefficients by minimizing a penalized least squares criterion \begin{eqnarray*} \frac 12 \| \mathbf{y} - \mathbf{X} \beta\|_2^2 + \frac{\lambda}{2} \|\beta\|_2^2. \end{eqnarray*} Here $\mathbf{y} \in \mathbb{R}^n$ and $\mathbf{X} \in \mathbb{R}^{n \times p}$ are fixed data. $\boldsymbol{\beta} \in \mathbb{R}^p$ are the regression coefficients to be estimated.
Q5.1 Show that, regardless the shape of $\mathbf{X}$, there is always a unique global minimum for any $\lambda>0$ and the ridge solution is given by \begin{eqnarray*} \widehat{\boldsymbol{\beta}}(\lambda) = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}. \end{eqnarray*}
Q5.2 Express ridge solution $\widehat{\boldsymbol{\beta}}(\lambda)$ in terms of the singular value decomposition (SVD) of $\mathbf{X}$.
Q5.3 Show that (i) the $\ell_2$ norms of ridge solution $\|\widehat{\boldsymbol{\beta}}(\lambda)\|_2$ and corresponding fitted values $\|\widehat{\mathbf{y}} (\lambda)\|_2 = \|\mathbf{X} \widehat{\boldsymbol{\beta}}(\lambda)\|_2$ are non-increasing in $\lambda$ and (ii) the $\ell_2$ norm of the residual vector $\|\mathbf{y} - \widehat{\mathbf{y}}(\lambda)\|_2$ is non-decreasing in $\lambda$.
Q5.4 Let's address how to choose the optimal tuning parameter $\lambda$. Let $\widehat{\boldsymbol{\beta}}_k(\lambda)$ be the solution to the ridge problem \begin{eqnarray*} \text{minimize} \,\, \frac 12 \| \mathbf{y}_{-k} - \mathbf{X}_{-k} \boldsymbol{\beta}\|_2^2 + \frac{\lambda}{2} \|\beta\|_2^2, \end{eqnarray*} where $\mathbf{y}_{-k}$ and $\mathbf{X}_{-k}$ are the data with the $k$-th observation taken out. The optimal $\lambda$ can to chosen to minimize the cross-validation square error \begin{eqnarray*} C(\lambda) = \frac 1n \sum_{k=1}^n [y_k - \mathbf{x}_k^T \widehat{\boldsymbol{\beta}}_k(\lambda)]^2. \end{eqnarray*} However computing $n$ ridge solutions $\widehat{\boldsymbol{\beta}}_k(\lambda)$ is expensive. Show that, using SVD $\mathbf{X}=\mathbf{U} \Sigma \mathbf{V}^T$, \begin{eqnarray*} C(\lambda) = \frac 1n \sum_{k=1}^n \left[ \frac{y_k - \sum_{j=1}^r u_{kj} \tilde y_j \left( \frac{\sigma_j^2}{\sigma_j^2 + \lambda} \right)}{1 - \sum_{j=1}^r u_{kj}^2 \left( \frac{\sigma_j^2}{\sigma_j^2 + \lambda} \right)} \right]^2, \end{eqnarray*} where $\tilde{\mathbf{y}} = \mathbf{U}^T \mathbf{y}$. Therefore, in practice, we only need to do SVD of $\mathbf{X}$ and then find the optimal value $\lambda$ that minimizes the leave-one-out (LOO) cross-validation error.
Q6. (Factor analysis) Let $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^p$ be iid samples from a multivariate normal distribution $N(\mathbf{0}_p, \mathbf{F} \mathbf{F}' + \mathbf{D})$, where $\mathbf{F} \in \mathbb{R}^{p \times r}$ and $\mathbf{D} \in \mathbb{R}^{p \times p}$ is a diagonal matrix with positive entries. We estimate the factor matrix $\mathbf{F}$ and diagonal matrix $\mathbf{D}$ by maximizing the log-likelihood function $$ \ell(\mathbf{F}, \mathbf{D}) = - \frac n 2 \ln \det (\mathbf{F} \mathbf{F}' + \mathbf{D}) - \frac n2 \text{tr} \left[(\mathbf{F} \mathbf{F}' + \mathbf{D})^{-1} \mathbf{S} \right] - \frac{np}{2} \ln 2\pi, $$ where $\mathbf{S} = n^{-1} \sum_{i=1}^n \mathbf{y}_i \mathbf{y}_i'$.
Q6.1 We first show that, for fixed $\mathbf{D}$, we can find the maximizer $\mathbf{F}$ explicitly using SVD by the following steps.
Q6.2 Show that, for fixed $\mathbf{F}$, we can find the maximizer $\mathbf{D}$ explicitly. (Hint: first-order optimality condition.)
Combining Q6.1 and Q6.2, a natural algorithm for finding the MLE of factor analysis model is to alternately update $\mathbf{F}$ and $\mathbf{D}$ until convergence.