Highlights In this lecture, we'll show (1) the fundamental theorem of linear algebra:
and (2) any symmetric, idempotent matrix $\mathbf{P}$ is the orthogonal projector onto $\mathcal{C}(\mathbf{P})$ (along $\mathcal{C}(\mathbf{P})^\perp = \mathcal{N}(\mathbf{P}')$).
The sum of two vector spaces $\mathcal{S}_1$ and $\mathcal{S}_2$ of same order is $$ \mathcal{S}_1 + \mathcal{S}_2 = \{\mathbf{x}_1 + \mathbf{x}_2: \mathbf{x}_1 \in \mathcal{S}_1, \mathbf{x}_2 \in \mathcal{S}_2\}. $$
In HW4, we show that $\mathcal{S}_1 + \mathcal{S}_2$ is a vector space.
Dimension of a sum of subspaces. Let $\mathcal{S}_1$ and $\mathcal{S}_2$ be two subspaces in $\mathbb{R}^n$. Then $$ \text{dim}(\mathcal{S}_1 + \mathcal{S}_2) = \text{dim}(\mathcal{S}_1) + \text{dim}(\mathcal{S}_2) - \text{dim}(\mathcal{S}_1 \cap \mathcal{S}_2). $$
Recall that the sum of two vector spaces $\mathcal{S}_1 + \mathcal{S}_2$ is defined in HW4.
Proof (optional): Idea: extend a basis of $\mathcal{S}_1 \cap \mathcal{S}_2$ to ones for $\mathcal{S}_1$ and $\mathcal{S}_2$. See, e.g., BR p156-157.
Corollaries.
Subadditivity of dim function. Let $\mathcal{S}_1$ and $\mathcal{S}_2$ be two subspaces in $\mathbb{R}^n$. Then $$ \text{dim}(\mathcal{S}_1 + \mathcal{S}_2) \le \text{dim}(\mathcal{S}_1) + \text{dim}(\mathcal{S}_2). $$
This is an immediate corollary of the preceding theorem. In HW4, we give a self-contained proof without using the preceding theorem.
Subadditivity of rank function. Let $\mathbf{A}$ and $\mathbf{B}$ be two matrices of the same order. Then
$$
\text{rank}(\mathbf{A} + \mathbf{B}) \le \text{rank}(\mathbf{A}) + \text{rank}(\mathbf{B}).
$$
Proof: First claim trivially follows from the previous result or your own proof in HW4. For the second claim. First note $\mathcal{C}(\mathbf{A} + \mathbf{B}) \subseteq \mathcal{C}(\mathbf{A}) + \mathcal{C}(\mathbf{B})$ (why?). Then \begin{eqnarray*} & & \text{rank}(\mathbf{A} + \mathbf{B}) \\ &=& \text{dim}(\mathcal{C}(\mathbf{A} + \mathbf{B})) \quad \text{(definition of rank)} \\ &\le& \text{dim}(\mathcal{C}(\mathbf{A}) + \mathcal{C}(\mathbf{B})) \quad \text{(monotonicity of dim)} \\ &\le& \text{dim}(\mathcal{C}(\mathbf{A})) + \text{dim}(\mathcal{C}(\mathbf{B})) \quad \text{(subadditivity of dim)} \\ &=& \text{rank}(\mathbf{A}) + \text{rank}(\mathbf{B}). \quad \text{(definition of rank)} \end{eqnarray*} The second inequality follows from the first claim.
Two subspaces $\mathcal{S}_1$ and $\mathcal{S}_2$ in a vector space $\mathcal{V}$ are said to be complementary whenever $$ \mathcal{V} = \mathcal{S}_1 + \mathcal{S}_2 \text{ and } \mathcal{S}_1 \cap \mathcal{S}_2 = \{\mathbf{0}\}. $$ In such cases, we say $\mathcal{V}$ is a direct sum of $\mathcal{S}_1$ and $\mathcal{S}_2$ and denote $\mathcal{V} = \mathcal{S}_1 \oplus \mathcal{S}_2$.
TODO: visualize. $\mathbb{R}^3 = \text{a plane} \oplus \text{a line}$.
Let $\mathcal{S}_1, \mathcal{S}_2$ be two subspaces of same order and $\mathcal{V} = \mathcal{S}_1 + \mathcal{S}_2$. Following statements are equivalent:
Any vector $\mathbf{x} \in \mathcal{V}$ can be uniquely represented as $$ \mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2, \text{ where } \mathbf{x}_1 \in \mathbf{S}_1, \mathbf{x}_2 \in \mathbf{S}_2. $$ We will refer to this as the unique representation or unique decomposition property of direct sums.
Proof (optional): We show that $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.
$1 \Rightarrow 2$: By definition of direct sum, we know $\mathcal{S}_1 \cap \mathcal{S}_2 = \{\mathbf{0}\}$. Thus $\text{dim}(\mathcal{S}_1 + \mathcal{S}_2) = \text{dim}(\mathcal{S}_1) + \text{dim}(\mathcal{S}_2)$.
$2 \Rightarrow 3$: By 2, we know $\text{dim}(\mathcal{S}_1 \cap \mathcal{S}_2) = 0$ so $\mathcal{S}_1 \cap \mathcal{S}_2 = \{\mathbf{0}\}$. Let $\mathbf{x} \in \mathcal{S}_1 + \mathcal{S}_2$ and assume $\mathbf{x}$ can be decomposed in two ways: $\mathbf{x} = \mathbf{u}_1 + \mathbf{u}_2 = \mathbf{v}_1 + \mathbf{v}_2$, where $\mathbf{u}_1, \mathbf{v}_1 \in \mathcal{S}_1$ and $\mathbf{u}_2, \mathbf{v}_2 \in \mathcal{S}_2$. Then $\mathbf{u}_1 - \mathbf{v}_1 = -(\mathbf{u}_2 - \mathbf{v}_2)$, indicating that the vectors $\mathbf{u}_1 - \mathbf{v}_1$ and $\mathbf{u}_2 - \mathbf{v}_2$ belong to both $\mathcal{S}_1$ and $\mathcal{S}_2$ and thus must be $\mathbf{0}$. Therefore $\mathbf{u}_1 = \mathbf{v}_1$ and $\mathbf{u}_2 = \mathbf{v}_2$.
$3 \Rightarrow 1$: We only need to show $\mathcal{S}_1 \cap \mathcal{S}_2 = \{\mathbf{0}\}$. Let $\mathbf{x} \in \mathcal{S}_1 \cap \mathcal{S}_2$. Decompose $\mathbf{x}$ in two ways: $\mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x}$. Then by the uniqueness part of 3, $\mathbf{x}=\mathbf{0}$. So the only possible element in $\mathcal{S}_1 \cap \mathcal{S}_2$ is $\mathbf{0}$.
An orthocomplement set of a set $\mathcal{X}$ (not necessarily a subspace) in a vector space $\mathcal{V} \subseteq \mathbb{R}^m$ is defined as $$ \mathcal{X}^\perp = \{ \mathbf{u} \in \mathcal{V}: \langle \mathbf{x}, \mathbf{u} \rangle = 0 \text{ for all } \mathbf{x} \in \mathcal{X}\}. $$ $\mathcal{X}^\perp$ is always a vector space regardless $\mathcal{X}$ is a vector space or not.
Proof: midterm.
TODD: visualize $\mathbb{R}^3 = \text{a plane} \oplus \text{plan}^\perp$.
Direct sum theorem for orthocomplementary subspaces. Let $\mathcal{S}$ be a subspace of a vector space $\mathcal{V}$ with $\text{dim}(\mathcal{V}) = m$. Then the following statements are true.
$m = \text{dim}(\mathcal{S}) + \text{dim}(\mathcal{S}^\perp)$.
By the uniqueness of decomposition for direct sum, we know the expression of $\mathbf{y} = \mathbf{u} + \mathbf{v}$ is also unique.
Proof of 1: Let $\{\mathbf{z}_1, \ldots, \mathbf{z}_r\}$ be an orthonormal basis of $\mathcal{S}$ and extend it to an orthonormal basis $\{\mathbf{z}_1, \ldots, \mathbf{z}_r, \mathbf{z}_{r+1}, \ldots, \mathbf{z}_m\}$ of $\mathcal{V}$. Then any $\mathbf{y} \in \mathcal{V}$ can be expanded as
$$
\mathbf{y} = (\alpha_1 \mathbf{z}_1 + \cdots + \alpha_r \mathbf{z}_r) + (\alpha_{r+1} \mathbf{z}_{r+1} + \cdots + \alpha_m \mathbf{z}_m),
$$
where the first sum belongs to $\mathcal{S}$ and the second to $\mathcal{S}^\perp$.
Proof of 2: Suppose $\mathbf{x} \in \mathcal{S} \cap \mathcal{S}^\perp$, then $\mathbf{x} \perp \mathbf{x}$, i.e., $\langle \mathbf{x}, \mathbf{x} \rangle = 0$. Therefore $\mathbf{x} = \mathbf{0}$.
Proof of 3: Statement 1 says $\mathcal{V} = \mathcal{S} + \mathcal{S}^\perp$. Statement 2 says $\mathcal{S}$ and $\mathcal{S}^\perp$ are essentially disjoint. Thus $\mathcal{V} = \mathcal{S} \oplus \mathcal{S}^\perp$.
Proof of 4: Follows from essential disjointness between $\mathcal{S}$ and $\mathcal{S}^\perp$.
Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then
$\mathcal{N}(\mathbf{A})^\perp = \mathcal{C}(\mathbf{A}')$ and $\mathbb{R}^n = \mathcal{N}(\mathbf{A}) \oplus \mathcal{C}(\mathbf{A}')$.
Proof of 1: To show $\mathcal{C}(\mathbf{A})^\perp = \mathcal{N}(\mathbf{A}')$, \begin{eqnarray*} & & \mathbf{x} \in \mathcal{N}(\mathbf{A}') \\ &\Leftrightarrow& \mathbf{A}' \mathbf{x} = \mathbf{0} \\ &\Leftrightarrow& \mathbf{x} \text{ is orthogonal to columns of } \mathbf{A} \\ &\Leftrightarrow& \mathbf{x} \in \mathcal{C}(\mathbf{A})^\perp. \end{eqnarray*} Then, $\mathbb{R}^m = \mathcal{C}(\mathbf{A}) \oplus \mathcal{C}(\mathbf{A})^\perp = \mathcal{C}(\mathbf{A}) \oplus \mathcal{N}(\mathbf{A}')$.
Proof of 2: Since $\mathcal{C}(\mathbf{A})$ is a subspace, $(\mathcal{C}(\mathbf{A})^\perp)^\perp = \mathcal{N}(\mathbf{A}')^\perp$.
Proof of 3: Applying part 2 to $\mathbf{A}'$, we have $$ \mathcal{C}(\mathbf{A}') = \mathcal{N}((\mathbf{A}')')^\perp = \mathcal{N}(\mathbf{A})^\perp $$ and $$ \mathbb{R}^n = \mathcal{N}(\mathbf{A}) \oplus \mathcal{N}(\mathbf{A})^\perp = \mathcal{N}(\mathbf{A}) \oplus \mathcal{C}(\mathbf{A}'). $$
Suppose $\mathcal{S}$ is a subspace of a vector space $\mathcal{V}$ and $\mathbf{y} \in \mathcal{V}$. Let $\mathbf{y} = \mathbf{u} + \mathbf{v}$ be the unique representation of $\mathbf{y}$ with $\mathbf{u} \in \mathcal{S}$ and $\mathbf{v} \in \mathcal{S}^\perp$. Then the vector $\mathbf{u}$ is called the orthogonal projection of $\mathbf{y}$ into $\mathcal{S}$ (along $\mathcal{S}^\perp$).
The closest point theorem. Let $\mathcal{S}$ be a subspace of some vector space $\mathcal{V}$ and $\mathbf{y} \in \mathcal{V}$. The orthogonal projection of $\mathbf{y}$ into $\mathcal{S}$ is the unique point in $\mathcal{S}$ that is closest to $\mathbf{y}$. In other words, if $\mathbf{u}$ is the orthogonal projection of $\mathbf{y}$ into $\mathcal{S}$, then $$ \|\mathbf{y} - \mathbf{u}\|^2 \le \|\mathbf{y} - \mathbf{w}\|^2 \text{ for all } \mathbf{w} \in \mathcal{S}, $$ with equality holding only when $\mathbf{w} = \mathbf{u}$.
Proof: Picture. \begin{eqnarray*} & & \|\mathbf{y} - \mathbf{w}\|^2 \\ &=& \|\mathbf{y} - \mathbf{u} + \mathbf{u} - \mathbf{w}\|^2 \\ &=& \|\mathbf{y} - \mathbf{u}\|^2 + 2(\mathbf{y} - \mathbf{u})'(\mathbf{u} - \mathbf{w}) + \|\mathbf{u} - \mathbf{w}\|^2 \quad \quad \quad (\mathbf{u} - \mathbf{w} \in \mathcal{S}, \mathbf{y} - \mathbf{u} \in \mathcal{S}^\perp) \\ &=& \|\mathbf{y} - \mathbf{u}\|^2 + \|\mathbf{u} - \mathbf{w}\|^2 \\ &\ge& \|\mathbf{y} - \mathbf{u}\|^2. \end{eqnarray*}
Let $\mathbb{R}^n = \mathcal{S} \oplus \mathcal{S}^\perp$. A square matrix $\mathbf{P}_{\mathcal{S}}$ is called the orthogonal porjector into $\mathcal{S}$ if, for every $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{P}_{\mathcal{S}} \mathbf{y}$ is the projection of $\mathbf{y}$ into $\mathcal{S}$ along $\mathcal{S}^\perp$.
Let $\mathbf{X} = \begin{pmatrix} | & & | \\ \mathbf{x}_1 & \dots & \mathbf{x}_p \\ | & & | \end{pmatrix} \in \mathbb{R}^{n \times p}$. We construct the orthogonal projector $\mathbf{P}$ into $\mathcal{C}(\mathbf{X})$ using different ways.
Let $\mathbf{q}_1, \ldots, \mathbf{q}_r$ be an orthonormal basis of $\mathcal{C}(\mathbf{X})$, e.g., by Gram-Schmidt with pivoting. Then $$ \mathbf{P} = \mathbf{Q} \mathbf{Q}', \text{where } \mathbf{Q} = \begin{pmatrix} | & & | \\ \mathbf{q}_1 & \dots & \mathbf{q}_r \\ | & & | \end{pmatrix}, $$ is the orthogonal projector $\mathbf{P}$ into $\mathcal{C}(\mathbf{X})$.
Proof: For any $\mathbf{y} \in \mathbb{R}^n$, we show $\mathbf{y} = \mathbf{P} \mathbf{y} + (\mathbf{y} - \mathbf{P} \mathbf{y})$ such that $\mathbf{P} \mathbf{y} \in \mathcal{C}(\mathbf{X})$ and $\mathbf{y} - \mathbf{P} \mathbf{y} \in \mathcal{C}(\mathbf{X}^\perp = \mathcal{N}(\mathbf{X}')$. $$ \mathbf{P} \mathbf{y} = \mathbf{Q} \mathbf{Q}' \mathbf{y} \in \mathcal{C}(\mathbf{Q}) = \mathcal{C}(\mathbf{X}). $$ And $$ \mathbf{Q}' (\mathbf{y} - \mathbf{P} \mathbf{y}) = \mathbf{Q}' (\mathbf{y} - \mathbf{Q} \mathbf{Q}' \mathbf{y}) = \mathbf{Q}' \mathbf{y} - \mathbf{Q}' \mathbf{y} = \mathbf{0}_r $$ thus $\mathbf{y} - \mathbf{P} \mathbf{y} \in \mathcal{N}(\mathbf{Q}') = \mathcal{C}(\mathbf{Q})^\perp = \mathcal{C}(\mathbf{X})^\perp$.
The orthogonal projector of $\mathbf{y}$ into $\mathcal{C}(\mathbf{X})$ is given by $\mathbf{u} = \mathbf{X} \boldsymbol{\beta}$, where $\boldsymbol{\beta}$ satisfies the normal equation $$ \mathbf{X}' \mathbf{X} \boldsymbol{\beta} = \mathbf{X}' \mathbf{y}. $$ Normal equation always has solution(s) (why?) and any generalized inverse $(\mathbf{X}'\mathbf{X})^-$ yields a solution $\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^- \mathbf{X}' \mathbf{y}$. Therefore, $$ \mathbf{P}_{\mathbf{X}} = \mathbf{X} (\mathbf{X}' \mathbf{X})^- \mathbf{X}'. $$ for any generalized inverse $(\mathbf{X}' \mathbf{X})^-$.
If $\mathbf{X}$ has full column rank, then the orthogonal projector into $\mathcal{C}(\mathbf{X})$ is given by $$ \mathbf{P}_{\mathbf{X}} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'. $$
Proof of 1: Since the orthogonal projection of $\mathbf{y}$ into $\mathcal{C}(\mathbf{X})$ lives in $\mathcal{C}(\mathbf{X})$, thus can be written as $\mathbf{u} = \mathbf{X} \boldsymbol{\beta}$ for some $\boldsymbol{\beta} \in \mathbb{R}^p$. Furthermore, $\mathbf{v} = \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \in \mathcal{C}(\mathbf{X})^\perp$ is orthogonal to any vectors in $\mathcal{C}(\mathbf{X})$ including the columns of $\mathbf{X}$. Thus $$ \mathbf{X}' (\mathbf{y} - \mathbf{X} \boldsymbol{\beta}) = \mathbf{0}, $$ or equivalently, $$ \mathbf{X}' \mathbf{X} \boldsymbol{\beta} = \mathbf{X}' \mathbf{y}. $$
Proof of 2: If $\mathbf{X}$ has full column rank, $\mathbf{X}' \mathbf{X}$ is non-singular and the solution to the normal equation is uniquely determined by $\boldsymbol{\beta} = (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$, and the orthogonal projection is $\mathbf{u} = \mathbf{X} \boldsymbol{\beta} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$.
We have multiple ways to construct an orthogonal projector into $\mathcal{C}(\mathbf{X})$. This leaves the natural question: are orthogonal projectors into the same vector space unique? The answer is a happy yes.
Theorem: Let $\mathbf{P}_{1}$ and $\mathbf{P}_2$ be two orthogonal projectors into a vector space $\mathcal{S}$. Then $\mathbf{P}_{1}=\mathbf{P}_2$.
Proof: By the uniqueness of the decomposition of direct sums, $\mathbf{P}_1 \mathbf{e}_i$ = $\mathbf{P}_2 \mathbf{e}_i$ for all $i$. Thus $\mathbf{P}_{1}=\mathbf{P}_2$.
By the construction of orthogonal projector $\mathbf{P} = \mathbf{Q} \mathbf{Q}'$, we see $\mathbf{P}$ is symmetric and idempotent $$ \mathbf{P} \mathbf{P} = \mathbf{Q} \mathbf{Q}' \mathbf{Q} \mathbf{Q}' = \mathbf{Q} \mathbf{Q}' = \mathbf{P}. $$ It turns out the reverse is also true.
Theorem: Any symmetric, idemponent matrix $\mathbf{P}$ is the orthogonal projector into $\mathcal{C}(\mathbf{P})$.
Proof: For any $\mathbf{x} \in \mathbb{R}^n$, let $\mathbf{x} = \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \in \mathcal{C}(\mathbf{P})$ and $\mathbf{w} \in \mathcal{C}(\mathbf{P})^\perp = \mathcal{N}(\mathbf{P}') = \mathcal{N}(\mathbf{P})$. Since $\mathbf{v} \in \mathcal{C}(\mathbf{P})$, $\mathbf{v} = \mathbf{P} \mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^n$. Then $\mathbf{P}\mathbf{x} = \mathbf{P} \mathbf{v} + \mathbf{P}\mathbf{w} = \mathbf{P} \mathbf{P} \mathbf{u} + \mathbf{P}\mathbf{w} = \mathbf{P} \mathbf{u} + \mathbf{P}\mathbf{w} = \mathbf{v} + \mathbf{0} = \mathbf{v}$. Thus $\mathbf{P}$ is the orthogonal projector into $\mathcal{C}(\mathbf{P})$. (Thanks Yuyuan for help!).