Today
-
Concluding remarks. Three pillars of machine learning: analysis/probability/statistics, linear algebra/optimization, and computing/algorithms.
-
Some applications.
-
Multivariate calculus and optimization (cont’d).
-
Course evaluation: https://my.ucla.edu/
Announcement
- Send me you questions before the last lecture. I will try to answer them in the last lecture.
Some issues I saw in HW6
-
HW6 Q10. Recognize SVD.
-
HW6 Q12. Explanations?
-
HW6 Q13. Invariance of the spectral norm (L2), nuclear norm, and Frobenius norm under orthogonal rotation.
-
HW6 Q17. Alternative proof of global optimality of $\hat{\Omega}$ using Cholesky decomposition (optional).
Q&A
-
HW6 Q11.6 (MP inverse produces the smallest least squares solution). $\beta^\star = (\beta^\star - \beta^+) + \beta^+$, where $\beta^\star - \beta^+ \in \mathcal{N}(X’X) = \mathcal{N}(X)$ and $\beta^+ \in \mathcal{C}(X’)$. Thus $\beta^\star - \beta^+ \perp \beta^+$ and $|\beta^\star|^2 = |\beta^\star - \beta^+|^2 + |\beta^+|^2 \ge |\beta^+|^2$.
-
HW4, Q3.5 (Householder transformation for QR decomposition).
-
HW4 BV 12.2.
-
Direct sum of vector spaces.