Activating project at `~/Documents/github.com/ucla-biostat-216/2023fall/slides/04-vecsp`
Status `~/Documents/github.com/ucla-biostat-216/2023fall/slides/04-vecsp/Project.toml`
[91a5bcdd] Plots v1.39.0
usingPlots
1 Vector space
A vector space or linear space or linear subspace or subspace\(\mathcal{S} \subseteq \mathbb{R}^n\) is a set of vectors in \(\mathbb{R}^n\) that are closed under addition and scalar multiplication. In other words, \(\mathcal{S}\) must satisfy
If \(\mathbf{x}, \mathbf{y} \in \mathcal{S}\), then \(\mathbf{x} + \mathbf{y} \in \mathcal{S}\).
If \(\mathbf{x} \in \mathcal{S}\), then \(\alpha \mathbf{x} \in \mathcal{S}\) for any \(\alpha \in \mathbb{R}\).
Or equivalently the set is closed under axpy operation. \(\alpha \mathbf{x} + \mathbf{y} \in \mathcal{S}\) for all \(\mathbf{x}, \mathbf{y} \in \mathcal{S}\) and \(\alpha \in \mathbb{R}\).
Any vector space must contain the zero vector \(\mathbf{0}\) (why?).
Examples of vector space:
Origin: \(\{\mathbf{0}\}\).
Line passing origin: \(\{\alpha \mathbf{x}: \alpha \in \mathbb{R}\}\) for a fixed vector \(\mathbf{x} \in \mathbb{R}^n\).
Plane passing origin: \(\{\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2: \alpha_1, \alpha_2 \in \mathbb{R}\}\) for two fixed vectors \(\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n\).
Euclidean space: \(\mathbb{R}^n\).
Order and dimension. The order of a vector space is simply the length of the vectors in that space. Not to be confused with the dimension of a vector space, which we later define as the maximum number of linearly independent vectors in that space.
Two vector spaces \(\mathcal{S}_1\) and \(\mathcal{S}_2\) are essentially disjoint or virtually disjoint if the only element in \(\mathcal{S}_1 \cap \mathcal{S}_2\) is the zero vector \(\mathbf{0}\).
Code
x = [1, -2, -2]α =-3:0.1:3f = x * α'plt =plot3d( f[1, :], f[2, :], f[3, :], title ="A line passing 0 is a subspace", lw =2, legend =false)plot!(plt, [0, x[1]], [0, x[2]], [0, x[3]], arrow =true, lw =5, marker =5)
Code
x1 = [2, 1, 0]x2 = [2, 0, 1]x =-3:3y =-3:3# h = a1 * x + a2 * y is linear and has to pass x1, x2# so [2 1; 2 0] * [a1, a2] = [0, 1]# [a1, a2] = [2 1; 2 0] \ [0, 1] = [0.5, -1]h(x, y) =0.5x - y;plt =wireframe(x, y, h, title ="A plane passing 0 is a subspace")plot!(plt, [0, x1[1]], [0, x1[2]], [0, x1[3]], arrow =true, lw =5, legend =false, marker =5)plot!(plt, [0, x2[1]], [0, x2[2]], [0, x2[3]], arrow =true, lw =5, legend =false, marker =5)
Questions:
Are the two vector spaces pictured above essentially disjoint?
Is a line not passing 0 a vector space?
Is a plane not passing 0 a vector space?
If \(\mathcal{S}_1\) and \(\mathcal{S}_2\) are two vector spaces of same order, then their intersection\(\mathcal{S}_1 \cap \mathcal{S}_2\) is a vector space.
Proof: HW3.
If \(\mathcal{S}_1\) and \(\mathcal{S}_2\) are two vector spaces of same order, then their union\(\mathcal{S}_1 \cup \mathcal{S}_2\) is not necessarily a vector space.
Give a counter-example in HW3.
Code
# plane 1x1 = [2, 1, 0]x2 = [2, 0, 1]# plane 2x3 = [1, 0, 1]x4 = [0, 1, -1]x =-3:3y =-3:3# h = a1 * x + a2 * y is linear and has to pass x1, x2# so [2 1; 2 0] * [a1, a2] = [0, 1]# [a1, a2] = [2 1; 2 0] \ [0, 1] = [0.5, -1]h(x, y) =0.5x - y;# g = b1 * x + b2 * y is linear and has to pass x3, x4# so [1 0; 0 1] * [b1, b2] = [-1, 0]# [b1, b2] = [1, -1]g(x, y) = x - y;plt =wireframe(x, y, g, title ="Intersection of two subspaces is a subspace")wireframe!(plt, x, y, h)
2 Span
The span of a set of \(\mathbf{x}_1,\ldots,\mathbf{x}_k \in \mathbb{R}^n\), defined as the set of all possible linear combinations of \(\mathbf{x}_i\)s \[
\text{span} \{\mathbf{x}_1,\ldots,\mathbf{x}_k\} = \left\{\sum_{i=1}^k \alpha_i \mathbf{x}_i: \alpha_i \in \mathbb{R} \right\},
\] is a vector space in \(\mathbb{R}^n\).
Proof: HW3.
3 Four fundamental subspaces
Let \(\mathbf{A}\) be an \(m \times n\) matrix \[\begin{eqnarray*}
\mathbf{A} = \begin{pmatrix}
\mid & & \mid \\
\mathbf{a}_1 & \ldots & \mathbf{a}_n \\
\mid & & \mid
\end{pmatrix}.
\end{eqnarray*}\]
The column space of \(\mathbf{A}\) is \[\begin{eqnarray*}
\mathcal{C}(\mathbf{A}) &=& \{ \mathbf{y} \in \mathbb{R}^m: \mathbf{y} = \mathbf{A} \mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \} \\
&=& \text{span}\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}.
\end{eqnarray*}\] Sometimes it is also called the image or range or manifold of \(\mathbf{A}\).
The row space of \(\mathbf{A}\) is \[\begin{eqnarray*}
\mathcal{R}(\mathbf{A}) &=& \mathcal{C}(\mathbf{A}') \\
&=& \{ \mathbf{y} \in \mathbb{R}^n: \mathbf{y} = \mathbf{A}' \mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^m \}.
\end{eqnarray*}\]
The null space or kernel of \(\mathbf{A}\) is \[\begin{eqnarray*}
\mathcal{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n: \mathbf{A} \mathbf{x} = \mathbf{0}\}.
\end{eqnarray*}\]
The left null space\(\mathbf{A}\) is \[\begin{eqnarray*}
\mathcal{N}(\mathbf{A}') = \{\mathbf{x} \in \mathbb{R}^m: \mathbf{A}' \mathbf{x} = \mathbf{0}\}.
\end{eqnarray*}\]
TODO in class: show these 4 sets are vector spaces.
Example: Draw the four subspaces of matrix \(\mathbf{A} = \begin{pmatrix} 1 & -2 & -2 \\ 3 & -6 & -6 \end{pmatrix}\). TODO in class.
4 Effects of matrix multiplication on column/row space
\(\mathcal{C}(\mathbf{C}) \subseteq \mathcal{C}(\mathbf{A})\) if and only if \(\mathbf{C} = \mathbf{A} \mathbf{B}\) for some matrix \(\mathbf{B}\).
In words, right matrix multiplication shrinks the column space.
Proof: The if part is easily verified since each column of \(\mathbf{C}\) is a linear combination of columns of \(\mathbf{A}\). For the only if part, assuming \(\mathcal{C}(\mathbf{C}) \subseteq \mathcal{C}(\mathbf{A})\), each column of \(\mathbf{C}\) is a linear combination of columns of \(\mathbf{A}\). In other words \(\mathbf{c}_j = \mathbf{A} \mathbf{b}_j\) for some \(\mathbf{b}_j\). Therefore \(\mathbf{C} = \mathbf{A} \mathbf{B}\), where \(\mathbf{B}\) has columns \(\mathbf{b}_j\).
\(\mathcal{R}(\mathbf{C}) \subseteq \mathcal{R}(\mathbf{A})\) if and only if \(\mathbf{C} = \mathbf{B} \mathbf{A}\) for some matrix \(\mathbf{B}\).
In words, left matrix multiplication shrinks the row space.
5 Essential disjointness of four fundamental subspaces
Row space and null space of a matrix are essentially disjoint. For any matrix \(\mathbf{A} \in \mathbb{R}^{m \times n}\), \[
\mathcal{R}(\mathbf{A}) \cap \mathcal{N}(\mathbf{A}) = \{\mathbf{0}_n\}.
\]
Proof: If \(\mathbf{x} \in \mathcal{R}(\mathbf{A}) \cap \mathcal{N}(\mathbf{A})\), then \(\mathbf{x} = \mathbf{A}' \mathbf{u}\) for some \(\mathbf{u}\) and \(\mathbf{A} \mathbf{x} = \mathbf{0}\). Thus \(\mathbf{x}' \mathbf{x} = \mathbf{u}' \mathbf{A} \mathbf{x} = \mathbf{u}' \mathbf{0} = 0\), which implies \(\mathbf{x} = \mathbf{0}\). This shows \(\mathcal{R}(\mathbf{A}) \cap \mathcal{N}(\mathbf{A}) \subseteq \{\mathbf{0}\}\). The other direction is trivial.
Column space and left null space of a matrix are essentially disjoint. For any matrix \(\mathbf{A} \in \mathbb{R}^{m \times n}\), \[
\mathcal{C}(\mathbf{A}) \cap \mathcal{N}(\mathbf{A}') = \{\mathbf{0}_m\}.
\]
Proof: For the first equation, we note \[\begin{eqnarray*}
& & \mathbf{x} \in \mathcal{N}(\mathbf{A}) \\
&\Rightarrow& \mathbf{A} \mathbf{x} = \mathbf{0} \\
&\Rightarrow& \mathbf{A}'\mathbf{A} \mathbf{x} = \mathbf{0} \\
&\Rightarrow& \mathbf{x} \in \mathcal{N}(\mathbf{A}'\mathbf{A}).
\end{eqnarray*}\] This shows \(\mathcal{N}(\mathbf{A}) \subseteq \mathcal{N}(\mathbf{A}'\mathbf{A})\). To show the other direction \(\mathcal{N}(\mathbf{A}) \supseteq \mathcal{N}(\mathbf{A}'\mathbf{A})\), we note \[\begin{eqnarray*}
& & \mathbf{x} \in \mathcal{N}(\mathbf{A}'\mathbf{A}) \\
&\Rightarrow& \mathbf{A}'\mathbf{A} \mathbf{x} = \mathbf{0} \\
&\Rightarrow& \mathbf{x}' \mathbf{A}' \mathbf{A} \mathbf{x} = 0 \\
&\Rightarrow& \|\mathbf{A} \mathbf{x}\|^2 = 0 \\
&\Rightarrow& \mathbf{A} \mathbf{x} = \mathbf{0} \\
&\Rightarrow& \mathbf{x} \in \mathcal{N}(\mathbf{A}).
\end{eqnarray*}\]
For the second equation, we apply the first equation to \(\mathbf{B} = \mathbf{A}'\).
7 Basis of a subspace
Eearlier in this class, we talked about basis of \(\mathbb{R}^n\). Now we generalize the concept of basis to vector spaces.
A set of linearly independent vectors that span a vector space \(\mathcal{S}\) is called a basis of \({\cal S}\).
Let \(\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_k\}\) be a basis of a vector space \(\mathcal{S}\). Then any vector \(\mathbf{x} \in \mathcal{S}\) can be expressed uniquely as a linear combination of vectors in \(\mathcal{A}\).
Proof: Suppose \(\mathbf{x}\) can be expressed by two linear combinations \[
\mathbf{x} = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_k \mathbf{a}_k = \beta_1 \mathbf{a}_1 + \cdots + \beta_k \mathbf{a}_k.
\] Then \((\alpha_1 - \beta_1) \mathbf{a}_1 + \cdots + (\alpha_k - \beta_k) \mathbf{a}_k = \mathbf{0}\). Since \(\mathbf{a}_i\) are linearly independent, we have \(\alpha_i = \beta_i\) for all \(i\).
In general, there can be many basis of a vector space. Next result shows that they all have the same number of vectors.
Theorem: Let \(\mathcal{A}=\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}\) and \(\mathcal{B}=\{\mathbf{b}_1, \ldots, \mathbf{b}_l\}\) be two basis of a vector space \(\mathcal{S} \subseteq \mathbb{R}^n\). Then \(k = l\).
Proof (optional). Define two matrices \[
\mathbf{A} = \begin{pmatrix}
\mid & & \mid \\
\mathbf{a}_1 & \cdots & \mathbf{a}_k \\
\mid & & \mid
\end{pmatrix} \in \mathbb{R}^{n \times k}, \quad \mathbf{B} = \begin{pmatrix}
\mid & & \mid \\
\mathbf{b}_1 & \cdots & \mathbf{b}_l \\
\mid & & \mid
\end{pmatrix} \in \mathbb{R}^{n \times l}.
\] Since \(\mathcal{B}\) spans \(\mathcal{S}\), \(\mathbf{a}_i = \mathbf{B} \mathbf{c}_i\) for some vector \(\mathbf{c}_i \in \mathbb{R}^l\) for \(i=1,\ldots,k\). Let \[
\mathbf{C} = \begin{pmatrix}
\mid & & \mid \\
\mathbf{c}_1 & \ldots & \mathbf{c}_k \\
\mid & & \mid
\end{pmatrix} \in \mathbb{R}^{l \times k}.
\] Then \(\mathbf{A} = \mathbf{B} \mathbf{C}\). Since \[
\mathcal{N}(\mathbf{C}) \subseteq \mathcal{N}(\mathbf{A}) = \{\mathbf{0}_n\},
\] the only solution to \(\mathbf{C} \mathbf{x} = \mathbf{0}_l\) is \(\mathbf{0}_k\). In other words, the columns of \(\mathbf{C}\) are linearly independent. Thus, by the independence-dimension inequality, \(\mathbf{C}\) has at least as many rows as columns. That is \(k \le l\). Lastly we reverse the role of \(\mathbf{A}\) and \(\mathbf{B}\) to obtain \(l \le k\).
The dimension of a vector space \(\mathcal{S}\), denoted by \(\text{dim}(\mathcal{S})\), is defined as
the number of vectors in any basis of \(\mathcal{S}\), or
the maximmal number of linearly independent vectors in \(\mathcal{S}\), or
the minimal number of vectors that span \(\mathcal{S}\).
To see the equivalence between 1 and 2. Let \(M\) be maximal number of linearly independent vectors in \(\mathcal{S}\). If \(\mathbf{a}_1, \ldots, \mathbf{a}_M \in \mathcal{S}\) are linearly independent, then they must span \(\mathcal{S}\), otherwise we can add more linearly independent vector(s) to the collection, conflicting with \(M\) is the maximal number of linearly independent vectors in \(\mathcal{S}\). Therefore \(\mathbf{a}_1, \ldots, \mathbf{a}_M\) is a basis and \(M = \text{dim}(\mathcal{S})\).
To see the equivalence between 1 and 3. Let \(m\) be the minimal number of vectors that span \(\mathcal{S}\). Suppose \(\mathbf{a}_1, \ldots, \mathbf{a}_m\) span \(\mathcal{S}\) and linearly dependent. Then we can take out one or more \(\mathbf{a}_i\) and the remaining vectors still span \(\mathcal{S}\). Therefore \(\mathbf{a}_1, \ldots, \mathbf{a}_m\) must be linearly independent and thus a basis. Therefore \(m = \text{dim}(\mathcal{S})\).
Monotonicity of dimension. If \(\mathcal{S}_1 \subseteq \mathcal{S}_2 \subseteq \mathbb{R}^n\) are two vector spaces of same order, then \(\text{dim}(\mathcal{S}_1) \le \text{dim}(\mathcal{S}_2)\).
Proof: Any independent set of vectors in \(\mathcal{S}_1\) also live in \(\mathcal{S}_2\). Thus the maximal number of independent vectors in \(\mathcal{S}_2\) can only be larger or equal to the maximal number of indepedent vectors in \(\mathcal{S}_1\).