Biostat 216 Homework 5
Due Nov 15 @ 11:59pm
Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook or Quarto) to Gradescope in BruinLearn.
1 Q1
Let \(\mathbf{A} \in \mathbb{R}^{m \times n}\). Show the following properties of generalized inverses.
For any generalized inverse \(\mathbf{A}^-\), \(\text{rank}(\mathbf{A}^-) \ge \text{rank}(\mathbf{A})\).
\(\text{rank}(\mathbf{A}^+) = \text{rank}(\mathbf{A})\).
\((\mathbf{A}^-)'\) is a generalized inverse of \(\mathbf{A}'\).
\((\mathbf{A}^+)' = (\mathbf{A}')^+\).
2 Q2 Householder algorithm for QR factorization
Let \(\mathbf{v} \in \mathbb{R}^n\). Define the Householder reflection matrix \[ \mathbf{H} = \mathbf{I} - 2 \frac{\mathbf{v} \mathbf{v}'}{\|\mathbf{v}\|^2} = \mathbf{I} - 2 \mathbf{u} \mathbf{u}', \] where \(\mathbf{u}\) is the unit vector \(\mathbf{v} / \|\mathbf{v}\|\).
Show that \(\mathbf{H}\) is symmetric and orthogonal.
Let \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^n\) such that \(\|\mathbf{a}\| = \|\mathbf{b}\|\). Find a Householder matrix such that \(\mathbf{H} \mathbf{a} = \mathbf{b}\).
Let \(\mathbf{a} \in \mathbb{R}^n\) be a non-zero vector. Find a Householder matrix such that \[ \mathbf{H} \mathbf{a} = \begin{pmatrix} \|\mathbf{a}\| \\ \mathbf{0}_{n-1} \end{pmatrix}. \]
Let \(\mathbf{a} \in \mathbb{R}^n\). Find a Householder matrix such that \[ \mathbf{H} \mathbf{a} = \begin{pmatrix} a_1 \\ \|\mathbf{a}_{2:n}\| \\ \mathbf{0}_{n-2} \end{pmatrix}. \]
Let \(\mathbf{A} \in \mathbb{R}^{n \times p}\). Describe how to find a sequence of Householder matrices \(\mathbf{H}_1, \ldots, \mathbf{H}_{p}\) such that \[ \mathbf{H}_{p} \mathbf{H}_{p-1} \cdots \mathbf{H}_1 \mathbf{A} = \mathbf{R}, \] where \(\mathbf{R} \in \mathbb{R}^{n \times p}\) is an upper triangular matrix.
Describe how this generates a full QR decomposition of matrix \(\mathbf{A} = \mathbf{Q} \mathbf{R}\), where \(\mathbf{Q} \in \mathbb{R}^{n \times n}\) is an orthogonal matrix and \(\mathbf{R}\) is upper triangular.
3 Q3
For any \(\mathbf{X} \in \mathbb{R}^{n \times p}\) and \(\mathbf{y} \in \mathbb{R}^n\), show that the normal equation \[ \mathbf{X}' \mathbf{X} \boldsymbol{\beta} = \mathbf{X}' \mathbf{y} \] always has at least one solution.
Show that \((\mathbf{A}' \mathbf{A})^- \mathbf{A}'\) is a generalized inverse of \(\mathbf{A}\).
\(\mathbf{P}_{\mathbf{A}} = \mathbf{A} (\mathbf{A}' \mathbf{A})^- \mathbf{A}'\) is the orthogonal projector onto \(\mathcal{C}(\mathbf{A})\).
4 Q4 Missile tracking
A missile is fired from enemy territory, and its position in flight is observed by radar tracking devices at the following positions.
\(x\)=Position down range (1000 miles) | 0 | 0.25 | 0.5 | 0.75 | 1 |
---|---|---|---|---|---|
\(y\)=Height (1000 miles) | 0 | 0.008 | 0.015 | 0.019 | 0.020 |
Suppose that intelligence sources indicate that enemy missiles are programmed to follow a parabolic flight path: \(y = f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2\). Where is the missile expected to land? Hint: You can find the solution using computer program. For example, in Julia, least squares solution is obtained by command A \ b
.
5 BV exercises
12.2, 12.4, 12.8